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a b s t r a c t

This paper, for the first time, applies the support vector machines (SVMs) paradigm to identify the opti-
mal segmentation algorithm for physical characterization of particulate matter. Size of the particles is an
essential component of physical characterization as larger particles get filtered through nose and throat
while smaller particles have detrimental effect on human health. Typical particulate characterization
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processes involve image reading, preprocessing, segmentation, feature extraction, and representation. Of
these various steps, knowledge based selection of optimal image segmentation algorithm (from existing
segmentation algorithms) is the key for accurately analyzing the captured images of fine particulate mat-
ter. Motivated by the emerging machine-learning concepts, we present a new framework for automating
the selection of optimal image segmentation algorithm employing SVMs trained and validated with image
feature data. Results show that the SVM method accurately predicts the best segmentation algorithm. As
well, an image processing algorithm based on Sobel edge detection is developed and illustrated.
. Introduction

Particulate matter (PM) is a complex mixture of minute solid
articles and liquid droplets found in air [1]. It consists of a num-
er of components such as acids, organic chemicals, metals, and
oil or dust particles. Typically, these particles can arise from nat-
ral sources (e.g. volcanoes, dust storms, forest fires, etc.) as well
s human activities (e.g. burning of fossil fuels in vehicles, power
lants, etc.).

Behavior of such particles in air and in human body is depen-
ent on their physical as well as chemical characteristics. Physical
roperties, e.g. size/shape, determine the time the particle remains
irborne and its penetration/deposition in human respiratory tract
2]. Morphological parameters establish the atmospheric behav-
or of particulate matter and their effect on human health [6].

or example, particles having aerodynamic diameter greater than
0 �m typically get filtered in the nose and throat, and do not
ause problems, but PM10 (with aerodynamic diameter less than
0 �m) can easily enter the lungs and cause severe health prob-
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lems. Fine PM2.5 (with diameters in the range of 0.1–2.5 �m) can
penetrate deep into the lungs [3–5] and may damage alveolar tis-
sues. Extremely small particles with diameters less than 100 nm
may affect other vital organs such as brain. Shape is one of the major
physical properties of PM determining the effect on human health
[7]. Geometrically speaking, angular shapes have more surface area
compared to round shapes. This increases the PM binding capac-
ity to other harmful substances. Shandilya and Kumar [8] studied
the morphology of particles present in a bio-diesel bus and charac-
terized the particles into 14 shapes. In essence, characterization of
particulate matter is an important field from the viewpoint of both
environment and human health.

Several approaches have been developed for analyzing the phys-
ical and chemical properties of particulate matter. The gravimetric
method quantitatively determines the chemical substances present
in the particles and is based on the mass of a substance. However,
it usually provides the chemical analysis of a single element, or a
group of elements, at a time [9]. Atomic absorption spectroscopy is
a technique that measures the absorption of radiation as function of
frequency or wavelength [10]. While this method can identify most
of the metals in the periodic table, it is not able to determine size or

shape of the particles. High performance liquid chromatography
(HPLC) extracts the chemical compound from mixture of com-
pounds based on polarity [11]. It is an automated process that takes
only a few minutes to produce results. However, it requires trained
technicians to operate expensive machinery. Gas chromatogra-
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hy/mass spectrometry (GC/MS) is a method that combines the
eatures of GC and MS for identifying various chemical substances
resent in a test sample [12,13]. However, this technique can only
e used for chemical characterization. Another method involves
bserving the collected particles through optical microscope so as
o measure their size [14]. Here, the particles are counted/measured
ntil stable size distribution range is obtained. This is a low-cost
ystem but involves slow counting process [14].

The state-of-the-art has progressed toward employing scan-
ing electron microscope (SEM) with energy dispersive X-ray (EDX)
ethod that uses electrons to provide magnified images, better

eature resolution, and a greater depth-of-field in contrast to light
icroscopes [15–17]. The spatial resolving power of the SEM tech-

ique is in the submicron level making it well-suited for PM10
nalysis. SEM/EDX method can be performed in three different
ays—Manual SEM, Computer Controlled SEM (CCSEM) method

18], and SEM integrated with image analyzing software techniques
19]. The first attempt to use image processing for PM began in the

id 80s, while development accelerated in the mid 90s with the
mergence of high-computational power and highly sophisticated
icroscopes. The inclination is to use modern image analysis sys-

ems with capabilities of analyzing thousands of particles (less than
�m) in a matter of minutes [20].

While these developments continued on the image acquisition
nd processing front, another area that emerged with applications
n wide engineering and scientific disciplines is machine learning.
or example, artificial neural networks have been applied to con-
erting human-intensive tasks to automated computer-tasks. One
f the disadvantages of neural networks is the requirement for a
elatively larger training data. However, collection of environmen-
al samples is often expensive. Motivated by these observations,
his paper applies a new machine leaning paradigm, i.e. SVMs, for
utomating the selection of optimal image segmentation algorithm.
nlike neural networks, SVMs require significantly fewer training
ata.

Section 2 describes the basic image processing steps involved
n the characterization of PM from captured images. Section 3
resents the developed extended Sobel edge detection method,
hile section 4 presents a comparison of commercially avail-

ble particle image analysis software tools. Section 5 presents an
pproach to automatic selection of optimal image segmentation
lgorithm employing SVMs. Finally, Section 6 concludes the paper.

. Principle of PM characterization by SEM integrated with
mage analyzing techniques

Analyzing the SEM images (after the images have been acquired)
or particle characterization consists of five steps: image reading,
reprocessing, segmentation, feature extraction, and representa-
ion [21].

.1. Image reading

Image reading converts the particle image into formatted
umerical values, which are then processed by a computer. Images
re represented as two-dimensional (2D) array of points called pix-
ls. Each pixel represents the irradiance at the corresponding grid
osition. The position of the pixel is specified by M × N matrices,
here M and N denotes the position of the pixel in Mth row and
th column.
.2. Preprocessing

This step improves the quality of the captured image before
urther analysis can be performed. The preprocessing step may
Materials 186 (2011) 1254–1262 1255

include noise reduction, contrast enhancement, etc. Noise reduc-
tion is the process of removing/reducing imperfections such as
unwanted dots, lines, smudges from the images while contrast
enhancement increases the contrast between object (particle) and
background (filter paper).

2.3. Segmentation

Segmentation is the most vital step in analyzing images for PM
characterization. Segmentation refers to the process of partitioning
a digital image into multiple segments (sets of pixels) [21]. Typi-
cally, segmentation locates objects and boundaries (lines, curves,
etc.) in images so as to identify particles in the image. In other
words, segmentation is the process of assigning a label to every
pixel in an image such that the pixels with the same labels share
similar visual characteristics [22].

For particle images, segmentation methods should accurately
separate particle pixels from background pixels. Currently, there
are many segmentation techniques but most of these do not yield
satisfactory results for all types of images, i.e., one segmentation
algorithm may not give the best result for all kind of images. Some
important segmentation algorithms and their best suited images
are depicted in Table 1. One of the main challenges during segmen-
tation is separating the connected particles present in the images
as it will readily change the estimate of its physical characteris-
tics such as count, size, shape. Techniques like Watershed [20],
Skeltonization by Influence Zone (SKIZ) [20], fuzzy c-mean segmen-
tation (FCM) [23], can be used to separate the connected particles.

2.4. Feature extraction

After separating the particles from the background in an image,
particle features have to be extracted. First, the connected com-
ponent labeling algorithm [24–26] is used to uniquely label each
particle present in image and then size, area, and other features
of particles are determined. As particles are irregular in shape, we
define the size of particle as the longest distance between two edges
of the particle. Finding the shape of the particle is a difficult problem
and is separately discussed in Section 2.4.1.

2.4.1. Shape of PM
Particle shape analysis is one of the most difficult problems in

PM characterization. The shape factor or form factor (ff) is one of
the parameters that characterize the shape of an object [27]. It
compares the object’s area (A) to its perimeter (P) and is defined
by:

ff = 4�A

P2
. (1)

Smooth and round objects have a form factor close to unity while
elongated objects have a smaller form factor (0 < ff < 1). The area is
evaluated by enumerating the number of pixels inside the object.
The perimeter of particle is determined by counting the number of
pixels along the particle’s border.

2.5. Representation

Data such as the size and shape of particles present in filter paper
is processed by conventional statistical methods, and the results
can be represented by various types of graphs, histograms, and

tables.

To demonstrate the use of image processing algorithm for
physical characterization of PM, an image processing algorithm is
developed based on the extended Sobel edge detection method.
This algorithm is discussed in Section 3.
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Table 1
Different segmentation algorithms.

Method Suitable image Segmentation effect Comments

Minimum thresholding Images with high intensity difference between
object and background

Normal Narrow application area

Iterative thresholding All type of images Good Sensitive to noise
Entropy based thresholding Images with low contrast and complex background Normal Sensitive to noise
Otsu thresholding Images with bi-modal histogram Good Does not work well with images with non-uniform

illumination
Genetic algorithm All types of images Normal Performance can be increased by optimizing

adaptability function
Genetic algorithm with Otsu All types of images Excellent Speed is slow
Edge based segmentation Images having sharp edges Good Edges identified by edge detection are often

disconnected, closed regions required for object
segmentation

Fuzzy clustering segmentation All types of images Good Quality of the final solution depends on initial
cluster set

Good Segmentation speed is slow
Good Has fast computing capability and less sensitive to

noise, but requires extensive training
Normal Leads to over segmentation
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Table 2
SEM setting used for capturing images.

Acceleration voltage (keV) 30
Iterative fuzzy segmentation All types of images
Neural network based segmentation All types of images

Watershed segmentation All types of images

. Extended Sobel edge detection method for particle
haracterization

To start with, the noise present in the image is reduced by
sing a median filter. The median filter is a nonlinear digital fil-
ering method that reduces noise while preserving the edges. A

edian filter replaces each pixel’s intensity value in an image with
median value calculated in small window, with size say 3 × 3 pix-
ls. Then, the edges of the particles present in image are identified
y using the Sobel edge detection operator [35]. The Sobel operator
alculates the gradient of the image intensity at each pixel, i.e. it cal-
ulates the directional change in the intensity for each pixel. After
he gradient image has been computed, pixels with large gradient
alues become edge pixels. Mathematically, the operator uses two
× 3 kernels (these are the matrices shown in (2)) which are con-
olved with the original image to calculate the approximation of
he derivatives, one for horizontal change and the other for vertical
hange [26]. If, I is assumed as source image, then Gx and Gy are two
mages that contain the horizontal and vertical derivative approx-
mations, and are computed using (2). At each pixel in the image,
he resulting horizontal and vertical gradient approximation can
e combined to give the gradient magnitude of the Sobel operated

mage using (3).

x =
[ −1 0 1

−2 0 2
1 0 1

]
∗ I and Gy =

[ −1 −2 −1
0 0 0
1 2 1

]
∗ I, (2)

here * denotes the convolution operation.

=
√

G2
x + G2

y . (3)

The Sobel operation results in lines of high contrast across the
oundary regions of particles. However, these lines do not quite
escribe the outline of the particles in an image as there can be
aps in the particles contour. These linear gaps are removed by
sing a dilation operator which uses a structuring element (small
ets or sub-images used to interact with the image) for expanding
he boundaries of foreground pixels in the image [26]. Dilation of
mage I using a structuring element B (I ⊕ B) is given by:

⊕ B = {Z|[(B̂)z ∩ I] ⊆ I}, (4)
here (B̂)z is reflection of B about its origin shifted by z.
After dilation, particle holes are filled using the region filling

lgorithm, based on (5) [26].

m = (Im−1 ⊕ B) ∩ Ac, (5)
Magnification 201
Working distance (mm) 8.8
Detector BSE

where m = 1, 2, 3, . . ., M, the algorithm terminates at iteration step M
if IM = IM−1. I0 = p, p is the point inside the boundary of the particle, A
denotes a set containing a subset whose elements are 8-connected
boundary points of the particle.

Further, the connected component labeling method is used to
count the number of particles in the image by labeling each par-
ticle in the image uniquely. Finally, the physical characteristics of
the particles are determined as discussed in Section 2.4. The image
shown in Fig. 1(a) and other images used in this paper are the
images of the filter paper captured using FEI Quanta 3D SEM. The
settings of the SEM are shown in Table 2. Particles present on the fil-
ter paper appear as bright spots in the images. Particles are collected
on the filter papers using GRIMM 1.108 aerosols counter during the
application of biosolids on farm fields of Ohio.

Various commercially available image analyzing software for
PM characterization are discussed in Section 4.

4. Commercial software for integrating SEM and image
analyzing techniques for PM characterization

Various commercial software are available for analyzing the
particle images obtained from SEM. The software can identify the
particles present in the image and also determine size, shape, and
other features of the particle. ImageJ [28] and Scanning Probe Image
Processor (SPIP) [29] are the most popular software used for analyz-
ing the SEM images. Software such as PAX-it [30], Clemex Vision PE
[31], SmartPI [32], and Image Pro [33] can automate the SEM con-
trols for capturing images and also analyze images automatically.

Two main drawbacks of commercial image software are: inabil-
ity to identify overlapped particles and non-automatic selection
of segmentation algorithms. When overlapped particles appear
in particle images, the existing software treats it as a single par-
ticle, which leads to incorrect physical characterization of these
particles. Various image processing techniques such as watershed

segmentation, SKIZ and fuzzy clustering [23] methods are reported
to separate these overlapped particles.

Another drawback of image analyzing software is the inability
to automatically determine the best segmentation method for a
given image. For each image, the segmentation algorithm is manu-
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ig. 1. Example to illustrate the extended Sobel edge detection method: (a) SEM i
fter applying dilation operator, (d) final output image showing filled particles.

lly selected from a stack of available algorithms based on the user’s
xperience and knowledge. As previously discussed, each image
egmentation algorithm gives satisfactory results for a particular
ype of image. For PM characterization using SEM integrated with
mage processing method, automatic selection of suitable segmen-
ation algorithm is required to achieve efficiency and robustness.
n this paper, we propose the selection of best image segmentation

lgorithm for particle images based on SVMs. The proposed method
s based on the fact that there exists a strong correlation between
mage features and the performance of segmentation algorithm
34]. Support vector machines have the capability of interpreting
mages like humans and use image features for automatically pre-

Fig. 2. (a) Basic linear separation hyperplane for two class
of a particulate filter paper, (b) image after applying the Sobel operator, (c) image

dicting best image segmentation algorithm [35] as discussed in
Section 5.

5. Selection of optimal image segmentation algorithm by
support vector machines

Support vector machines are a set of related supervised learn-

ing methods developed by Vapnik and his colleagues [36]. The SVM
constructs a hyperplane or set of hyperplanes in a high or infinite
dimensional space, which can be used for classification, regression
and other tasks. Basic linear separating hyperplane for a two class
problem is shown in Fig. 2(a). Given a set of training examples

problems and (b) multiclass classification by SVM.
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No

Yes

Update iterator i = i + 1 

Generates a prediction value with all 

Select m validating images 

Find histogram for all images

Create validating data  

SVM predictor reads model file and 
validating data of ith image and finds 

best algorithm using (11), (12) 

Initialize iterator i = 1 

i > m ?

image pixel are divided while finding the histogram of an image)
and AN ∈{1, 2, . . ., N} is a positive integer corresponding to the best
Fig. 3. SVM training algorithm.

elonging to two different categories, an SVM training algorithm
uilds a model that predicts which class a new image falls into.

A SVM is used as learning based technique for predicting the
uitable segmentation algorithm for an image based on its fea-
ures like a gray level histogram. Selection of the optimal image
egmentation algorithm using an SVM has two stages, training and
alidating. In the training stage, a database is created using random
mages along with the optimal segmentation algorithm for those
mages. Then the SVM is fed with this shaped database. The SVM
lassifies the training images into different classes by construct-
ng hyperplanes such that images having similar features belong to
class, thereby learning the relationship between image features

nd segmentation algorithms. It is assumed that the application of
segmentation algorithm to all images belonging to a class will
how comparable performance. In the validation stage, the SVM
valuates a particular class based on its previous training and thus
redicts the suitable segmentation algorithm.
predicted algorithm for m images 

Fig. 4. SVM validating algorithm.

Support vector machines are of two types, namely, linear SVM
and nonlinear SVM. Basically, SVMs are designed for binary clas-
sification problems i.e. two-class problems. However it can be
extended to a multiclass problem by simplifying it into multiple
binary classifications. An example illustrating the multiclass prob-
lem is shown in Fig. 2(b). In this paper, the multiclass SVM is used
for automating the selection of a suitable image segmentation algo-
rithm for images. Steps followed in training and validating stage are
discussed below.

5.1. Training SVM

First in the training stage a set of k images are selected and
histogram is determined for all images. Each training image is seg-
mented by all N different segmentation algorithms (A1, A2, . . ., AN),
with the goal of selecting the best image segmentation algorithm
for the image. The steps involve in SVM training is depicted in Fig. 3.

Each algorithm is identified with a positive integer value rang-
ing from 1 to N (number of segmentation algorithm), i.e. A1 = 1,
A2 = 2, . . ., AN = N. Next, the training data for the SVM is created
using an image histogram and its associated best segmentation
algorithm. This training database is of the form:

D = {(A1, x1), (A2, x2), . . . , (AN, xk)}T , (6)

where xk is the histogram of kth image represented in the form of
p-dimensional real vector (‘p’ is the number of bins into which the
segmentation algorithm for an image xk.
The SVM represents all training data D as points in multi-

dimensional space. As a SVM is designed for two class classification,
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ssume jth (j = 1, 2, . . ., N) algorithm as class one and the other
N − 1) algorithms as class two. The SVM determines the maximum-

argin hyperplane svmj to separate class one and class two.
aximum-margin hyperplane or classifier is given by (7).

vmj = wj · x + bj = 0 (7)

here ‘·’ denotes the dot product, wj is a p-dimensional normal vec-
or perpendicular to the hyperplane, and bj is a offset of hyperplane
rom the origin along the wj .

The normal vector wj and offset parameter bj are given by (8)
nd (9), respectively:

j =
∑k

i=1
˛iCixi, (8)

j = 1
Ns

Ns∑
i=1

(wj · xi − Ci), (9)

here Ci =
{

−1 for i = 1, 2, . . . , j − 1, j + 1, . . . , k
1 for i = j

}
, � is the

on-negative Lagrange multiplier and Ns is number of support
ectors. Support vectors are the closest data points to maximum-
argin hyperplane [36].
For N algorithms, N SVM classifiers svmj (j = 1, 2, . . ., N) are

ormed. Finally, the SVM model file is created with all N classifiers.

.2. Validating the SVM

SVM validating procedure is illustrated in Fig. 4. In the begin-
ing, validation data is created by using image histogram of the

mages. This data format is of the below form, assuming m valida-
ion images:

v = {xv
1, xv

2, . . . , xv
m}T , (10)

here xv
m is the histogram of mth validating image represented in

he form of p-dimensional real vector.
Validation images along with model files (created during train-

ng state) are used by SVM for predicting the suitable algorithm for
hese images. For kth (k is integer ranging from 1 to m) validation
ample, SVM reads the model file and determines:
j(x) = wj · xv
k + bj, for j = 1, 2, . . . , N, (11)

here wj and bj are the weight vector and offset value of svmj
lassifier, which are obtained from model file.

able 3
esults showing efficiency of SVM in predicting the optimal algorithm from a set of two,

No. of algorithms No. of training images No. of validating images

2

10 25
20 40
25 25
35 30
45 25

3

10 25
20 40
25 25
35 30
45 25

5

10 25
20 40
25 25
35 30
45 25
Fig. 5. GUI for PM characterization.

For kth validation sample, Nth algorithm is the optimal algo-
rithm if:

dN(x) = maxj=1 to Ndj(x). (12)

These steps are repeated for all validation images (i.e. for k = 1
to m) and finally a prediction file is generated, which consists of all
predicted algorithms for the given image.

5.3. Designed software

A graphical user interface (GUI) is developed using image pro-
cessing techniques and a SVM for analyzing particles images. A
snapshot of the GUI is shown in Fig. 5. Like other image process-
ing software, this GUI is provided with basic image processing
tools such as reading, editing, preprocessing. In addition, it has the
unique capability of selecting the best image segmentation method
based on image features using SVM. GUI can be used to determine
the particle features such as size, shape, area.

5.4. Results: examples of selecting optimal image segmentation
algorithm using SVM
The efficiency of a SVM in predicting the optimal image seg-
mentation algorithm from a set of algorithms is presented here.
Five different algorithms (Otsu thresholding [37], Kapur thresh-
olding [38], Rosin thresholding [39], Concavity thresholding [40],
and extended Sobel edge detection method) are considered in this

three and five algorithms.

No. of images with
correct prediction

No. of images with
incorrect prediction

Efficiency (%)

18 7 72
30 10 75
20 5 80
24 6 80
21 4 84

16 9 64
27 13 67
18 7 72
22 8 73
20 5 80

15 10 60
24 16 60
16 9 64
20 10 67
17 8 68
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Fig. 6. Comparison of SVM predicted algorithm with other methods: (a) SEM image of collected particles on filter paper, (b) SVM predicted method (Kapur thresholding)
output, (c) Otsu thresholding output.

Fig. 7. Comparison of SVM predicted algorithm with other methods: (a) SEM image of particles, (b) Kapur thresholding output, (c) Rosin thresholding method output, (d)
SVM predicted method (Otsu thresholding) output.

Table 4
Comparison of SVM predicted method with other methods in estimating the number of particles in image.

Image used Number of particles estimated by each segmentation method

Actual Kapur thresholding Otsu thresholding Rosin thresholding Concavity
thresholding

Extended Sobel edge
detection method

Case 1 Fig. 6(a) 40 33
a

346 – – –

Case 2 Fig. 7(a) 41 83 44
a

328 – –

Case 3 Fig. 8(a) 62 20 81 328 273 56a

a SVM predicted method.
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ig. 8. Comparison of SVM predicted algorithm with other methods: (a) SEM image
c) output of Kapur thresholding method, (d) output of Otsu thresholding method,

tudy. In case 1, two different segmentation algorithms are used
hile for case 2, three different segmentation algorithms are used

o study the efficiency of SVM. In case 3, five different segmentation
lgorithms are incorporated to study the efficiency of SVM. Table 3
hows the efficiency of SVM in predicting the optimal segmenta-
ion algorithm for each case. Figs. 6–8 show the comparison of SVM
elected algorithm with other algorithm for case 1, case 2 and case
respectively. The red circled regions in Fig. 7 shows the inaccuracy
f the algorithms in identifying the particles. From Table 4, it can be
bserved that SVM predicted algorithm is able to better estimate
he number of particles than other methods.

. Conclusion

In this paper, we proposed and illustrated a novel SEM
ntegrated with image processing technique based on SVM for iden-
ifying and characterizing the particulate matter. The SVM method
howed encouraging results in automating the selection of the best
egmentation algorithm and thus automates the process of parti-
le identification and characterization of particulate matter. Results
how that SVM method provides an accuracy of 68% for select-
ng the best segmentation algorithm from a set of five algorithms,
0% for selecting the best segmentation algorithm from a set of
hree algorithms and 84% for selecting the best algorithm from a
et of two algorithms. Further, it is observed that, even with a fewer
umber of training images, the SVM method showed satisfactory
erformance in predicting the best segmentation algorithm.

In the future, the SVM method can be applied to other image
rocessing problems. For example, this method can be extended to
elect the best noise reduction method for an image based on its
eatures. In this paper a gray level histogram is used as an image
eature to train the SVM. Future researchers can investigate other
mage features to train the SVM.
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